6 research outputs found

    A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection

    Get PDF
    Falls are dangerous for the elderly, often causing serious injuries especially when the fallen person stays on the ground for a long time without assistance. This paper extends our previous work on the development of a Fall Detection System (FDS) using an inertial measurement unit worn at the waist. Data come from SisFall, a publicly available dataset containing records of Activities of Daily Living and falls. We first applied a preprocessing and a feature extraction stage before using five Machine Learning algorithms, allowing us to compare them. Ensemble learning algorithms such as Random Forest and Gradient Boosting have the best performance, with a Sensitivity and Specificity both close to 99%. Our contribution is: a multi-class classification approach for fall detection combined with a study of the effect of the sensors’ sampling rate on the performance of the FDS. Our multi-class classification approach splits the fall into three phases: pre-fall, impact, post-fall. The extension to a multi-class problem is not trivial and we present a well-performing solution. We experimented sampling rates between 1 and 200 Hz. The results show that, while high sampling rates tend to improve performance, a sampling rate of 50 Hz is generally sufficient for an accurate detection

    A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers

    Get PDF
    Life expectancy of contemporary cardiac pacemakers is limited due to the use of an internal primary battery. Repeated device replacement interventions are necessary, which leads to an elevated risk for patients and an increase of health care costs. The aim of our study is to investigate the feasibility of powering an endocardial pacemaker by converting a minimal amount of the heart's kinetic energy into electric energy. The intrinsic cardiac muscle activity makes it an ideal candidate as continuous source of energy for endocardial pacemakers. For this reason, we developed a prototype able to generate enough power to supply a pacing circuit at different heart rates. The prototype consists of a mass imbalance that drives an electromagnetic generator while oscillating. We developed a mathematical model to estimate the amount of energy harvested from the right ventricle. Finally, the implemented prototype was successfully tested during in-vitro and in-vivo experiments

    A comparison of machine learning algorithms for fall detection using wearable sensors

    No full text
    The proportion of people 60 years old and above is expected to double globally to reach 22% by 2050. This creates societal challenges such as the increase of age-related illnesses and the need for caregivers. Falls are a major threat for the elderly, often causing serious injuries especially when the fallen person stays on the ground for a long time without assistance.This paper presents the development of a Fall Detection System (FDS) using an accelerometer combined with a gyroscope worn at the waist. Data come from SisFall, a publicly available dataset containing records of Activities of Daily Living and falls. We compared five Machine Learning algorithms. We first applied preprocessing and a feature extraction stage before using five Machine Learning algorithms, allowing us to compare them. Ensemble learning algorithms such as Random Forest andGradient Boosting have the best performance, with a Sensitivity and Specificity both close to 99%
    corecore